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Abstract
In three-dimensional configurations, the confinement region is surrounded by the stochastic magnetic field lines
related to magnetic islands or separatrix, leading to the fact that the plasma–vacuum boundary is not so definite
compared with tokamaks that the various modulations of the plasma–vacuum boundary will be induced around the
stochastic region by synergetic effects between a transport around the stochastic region and a large Shafranov shift of
the whole plasma, in especially high-β operations. To examine such modulation effects of the plasma boundary on
MHD instabilities, high-β plasmas allowing a large Shafranov shift or a large Pfirsch–Schlüter current are considered
in the inward-shifted LHD configurations with the vacuum magnetic axis Rax of 3.6 m, for which previous theoretical
analyses based on fixed MHD equilibria indicate that pressure-driven modes are significantly more unstable compared
with experimental observations. The concept of the averaged flux surfaces allowing a movement of the equilibrium
plasma into the stochastic region is introduced, which induces a boundary modulation and, at the same time, reduces
the discrepancy on MHD equilibria between the experimentally obtained and theoretically considered. As a result,
it is shown that the boundary modulation, namely, the whole plasma outward-shift due to a large Pfirsch–Schlüter
current has significant stabilizing effects on ideal MHD instabilities, leading to partially resolving the discrepancy
on MHD stability between experimental results and theoretical analyses.

PACS numbers: 52.55.Hc, 52.55.Tn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The structure of the ideal MHD spectrum is completely
determined by the MHD equilibrium and the mass density
profile. In order to analyse the experimental data on the MHD
stability or energetic ion-driven modes like toroidicity-induced
shear Alfvén eigenmodes (TAE) and helicity-induced shear
Alfvén eigenmodes (HAE), the net toroidal current profile or
the rotational transform profile, the pressure profile and the
boundary condition must be estimated from the experimental
results as accurately as possible, because the MHD equilibrium
is determined by these three conditions. On the other hand, the
extension of the MHD model to include micro multi-scales,
like ion and electron diamagnetic frequencies and ion and
electron skin depths, namely as an initiative to an extended
MHD, has been started. In this type of extension, to make a
precise equilibrium is one of the key points, in order to evaluate
the difference between the MHD model and the extended MHD
model, and to show the usefulness of the extended MHD

model for analyses of the experimental data. In the case of
the three-dimensional magnetic configurations, however, the
plasma boundary is not so definite compared with tokamaks
due to the stochastic magnetic field surrounding the nested
flux surfaces. The transport in such a stochastic magnetic
field (change in the temperature and the density) and the
internal plasma current like a Pfirsch–Schlüter current (change
in the magnetic field) simultaneously interact, and the MHD
equilibrium will be determined as a result of their synergetic
effects. In other words, there is a possibility that the boundary
will be modulated from the simple fixed boundary determined
by the clear vacuum last close flux surface. In order to
examine such the modulation effects of the plasma–vacuum
boundary on MHD instabilities, high-β plasmas allowing a
large Shafranov shift or a large Pfirsch–Schlüter current are
considered in the inward-shifted LHD configurations.

Recently, high-β plasmas with β � 3%, where β is the
ratio of the averaged kinetic pressure to the averaged magnetic
pressure, have been established in the inward-shifted LHD
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configurations with the vacuum magnetic axis Rax of
3.6 m [1, 2], for which previous theoretical ideal MHD
stability analyses based on fixed boundary equilibria have
shown that pressure-driven modes are significantly more
unstable compared with experimental observations [3]. There
may be two types of thought to remove this discrepancy
between theoretical and experimental results. One is to
show that the nonlinear saturation level of the linear modes
may be too low to influence the confinement performance
[4] and/or to show that some two-fluid or kinetic effects
added to the MHD model may have strong stabilizing effects.
The other is to reconsider the MHD equilibria themselves
used in the linear and nonlinear stability analyses, because
the stability properties of the linearized ideal MHD modes
are completely determined by the used MHD equilibria. It
should be noted that, in previous theoretical considerations, the
MHD equilibria are mainly created under the fixed boundary
corresponding to a clear last closed flux surface (LCFS)
of the vacuum magnetic field [3, 5], and that, even in the
free boundary equilibrium calculations, an artificial material
limiter is introduced to settle the plasma boundary on the clear
LCFS of the vacuum magnetic field at the outboard of the
horizontally elongated poloidal cross section, on which the
plasma pressure is assumed to vanish [4,6]. In these analyses,
the resultant MHD equilibria are strongly unstable against the
pressure-driven ideal MHD modes in the inward-shifted LHD
configurations.

These theoretical methods to determine the MHD
equilibria are based on the conjecture that the plasma does
not expand beyond the clear LCFS of the vacuum field so
much. Generally speaking, the clear LCFS of the vacuum
magnetic field is usually surrounded by unclear flux surfaces
or stochastic magnetic field lines in the three-dimensional
magnetic configurations. Thus, the above conjecture might
be correct, when the magnetic field lines in such peripheral
stochastic region have a quite short connection length or those
field lines are short open field lines compared with the parallel
mean free path. However, there is a case where the magnetic
field lines in the peripheral stochastic region have a fairly long
connection length compared with the parallel mean free path
and a definite rotational transform, which might be the case in
LHD. In such a case, when the electron thermal conductivity is
not so large in the peripheral stochastic region, the region with
stochastic magnetic field might be considered to potentially
have the confinement properties. Indeed, there are standard
experimental observations that (1) the electron temperature
gradient extends beyond the vacuum LCFS [7], (2) the electron
density profile is significantly hollow and expands beyond the
vacuum LCFS [8] and (3) from the low-β or with increasing
β, magnetic perturbations with the resonant rational surfaces
near or beyond the vacuum LCFS are observed by the magnetic
probes [9–11]. The first two experimental results indicate that
the stochastic magnetic field surrounding nested flux surfaces
holds confinement properties or pressure gradient and plasma
expands beyond the vacuum LCFS and the third observation
denotes that such a pressure gradient in the stochastic region
is large enough to drive the MHD instabilities. Since the
magnitude of the temperature in the stochastic region is small,
it might be considered that the low temperature and high
density plasma exist in the stochastic region, leading to the
short parallel mean free path to the magnetic field.

In the three-dimensional configurations, it is quite
difficult to determine the plasma–vacuum boundary useful for
MHD stability analyses, because the experimentally observed
confinement properties in the stochastic magnetic field region
are mainly determined by the transport process there. This
situation is completely different from tokamaks with clear
flux surfaces and separatrix. On the other hand, in heliotron
configurations like LHD, the Shafranov shift is fairly large,
namely, a large Pfirsch–Schlüter current (internal plasma
current) flows in equilibrium, which changes the plasma–
vacuum boundary through the change in the magnetic field
in both the plasma and the vacuum regions. Especially,
the pressure profile with a steep gradient near the plasma
boundary, which is suggested from experimental observations,
induces a significant Pfirsch–Schlüter current near the plasma
boundary, leading to a strong modification of the magnetic
field in the vacuum stochastic region. In the experiments,
of course, the MHD equilibrium strongly links the transport,
and both should be determined simultaneously. In order to
take into account the above standard experimental observations
[7–11], from two aspects, namely transport and equilibrium,
a new conjecture is introduced that averaged flux surfaces
with confinement properties are created in the region with
stochastic magnetic field. The averaged flux surfaces are
defined as a confinement region with a long connection length
compared with the parallel mean free path, a definite rotational
transform and a small electron thermal conductivity. The
averaged flux surfaces should be considered to be the result
of both the transport process and change in the magnetic field
in the stochastic region. Thus, it is natural to consider that
a movement of the equilibrium plasma by a large internal
plasma current into a region with averaged flux surfaces is
allowable and that a boundary modulation induced by the
plasma free motion might bring MHD equilibria into a state
with a lower free energy compared with that under the fixed
boundary. Indeed, the optimization of the three-dimensional
magnetic configurations has been done by controlling the
plasma–vacuum boundary shape [12].

In this work, analyses on MHD equilibria and stability
in the inward-shifted LHD configurations are reconsidered
from the aspect of the boundary modulation based on the
conjecture that averaged flux surfaces are created in the
stochastic vacuum magnetic field region. To consider free
boundary MHD equilibria allowing the boundary modulation
leads to reduction of the discrepancy on MHD equilibria
between the experimentally obtained and the theoretically
used, judging from the experimental observations [7–11]. As
a result, it is shown that the boundary modulation due to a free
motion of equilibrium plasma into the stochastic region with
the averaged flux surfaces, namely a whole plasma outward
shift in the major radius direction, has significant stabilizing
effects on the linearized ideal MHD stability with increasing
β, which may also lead to a partial removal of discrepancy on
MHD stability between experimental results and the previous
theoretical results based on the MHD equilibria with a fixed
boundary.

A comparison between experimental observation of the
magnetic signal and the standard MHD stability analyses
based on the fixed boundary MHD equilibria are given in
section 2, in order to clarify the relation of the MHD stability
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between experimental results and the standard theoretical
consideration. In section 3, several MHD equilibria with
different plasma–vacuum boundary are selected based on the
concept of the averaged flux surfaces, taking into account
the properties of the vacuum magnetic field in the inward-
shifted LHD configurations. The reason why several plasma–
vacuum boundaries are selected comes from the fact that
the systematic method of determining the plasma–vacuum
boundary is not found to take into account the transport in
the stochastic region. The properties of the Fourier modes of
the plasma boundary in selected MHD equilibria are discussed
in section 4, where it is shown that the change of the spectrum
by the Shafranov shift of the whole plasma or by the internal
plasma current is similar to that by the outward-shift of the
vacuum magnetic axis due to the external coil current, and
that the most significant change comes from the poloidally
symmetric components with (m, n) = (0, �= 0), where m

and n are the poloidal and toroidal Fourier mode numbers,
respectively. For the MHD equilibrium calculations, vmec
code [13] is used, where the pressure profile and the net
toroidal current condition are determined on the basis of the
experimental observations. The linearized ideal MHD stability
analyses are performed in section 5, where cas3d3 code [14],
based on the variational or energy principle, is used for low-n
incompressible or compressible perturbations under the fixed
or free boundary condition. The dependence of the growth
rates on both the boundary condition of MHD equilibria and
the β values is clearly shown, which means that the boundary
modulation, namely, a whole plasma outward-shift by a large
Pfirsch–Schlüter current has significant stabilizing effects on
linearized ideal MHD instabilities in the inward-shifted LHD
configurations. Section 6 is devoted to the summary and
discussions.

2. Experimental results and standard MHD stability
analyses

In order to clarify the relation between experimental results
and theoretical consideration in the inward-shifted LHD
configurations, magnetic perturbations observed by the
magnetic probes and the standard ideal MHD stability analyses
of the incompressible perturbations for the fixed boundary
MHD equilibria are compared for two types of the inward-
shifted LHD configurations. One of them is the inward-
shifted configuration with γc = 1.254 and the other is that
with γc = 1.220, where γc is the coil inverse aspect ratio
defined by γc = (M/L)(ac/R). M and L are the toroidal
field period and coil polarity of the helical coils, respectively
(for LHD, M = 10 and L = 2). ac and R are the minor
and major radii of the helical coils, respectively (for LHD,
R = 3.9 m). Thus, γc = 1.254 (γc = 1.220) means
ac = 0.978 m (ac = 0.952 m). This configuration change can
be brought about using the fact that the helical coil of LHD
consists of the three layers with independent power supply.
The inward-shifted configuration with γc = 1.254 has been
extensively used for high-β operations, in which high β plasma
with 〈βdia〉 = 3.2% has been achieved [1], where 〈βdia〉 is the
diamagnetic beta value defined as 4µ0/3 ·Wdia/(2BavVp) [10].
The notation of Wdia is the diamagnetic energy and Bav

and Vp are the averaged vacuum toroidal magnetic fields

inside the plasma boundary and the corresponding plasma
volume, respectively, and µ0 is the permeability in the vacuum.
The inward-shifted configuration with γc = 1.220 has been
pursued in order to achieve higher β plasma than that in the
configuration with γc = 1.254, and finally 〈βdia〉 = 4.1%
has been achieved [2]. The inward-shifted configuration with
γc = 1.220 is considered to have a better deposition profile of
the energetic ions due to NBI than that in the inward-shifted
configuration with γc = 1.254, because a higher aspect ratio
(lower γc) is considered to be favourable for recovering the
helical symmetry in the inward-shifted LHD configuration.

Two standard examples of the magnetic signals observed
by the magnetic probes are shown in figure 1 for inward-shifted
LHD configuration with γc = 1.254. The magnetic probes
are settled just in front of the helical coils and in the toroidal
direction, and so the range of the decomposed Fourier modes
is m = 0–3 and n = 0–5, where m and n are the poloidal and
toroidal Fourier modes, respectively.

Typically in the range with 〈βdia〉 < 2%, significant
n/m = 1/2 activities are observed, as is shown in shot
number 44238. Since, as is understood from the discussion
in the next section, the vacuum rotational transform at clear
LCFS is around �ιv ∼ 1.48, it is found that perturbations with
the Fourier modes resonating at the plasma periphery (n/m =
1/1) or near the plasma edge (n/m = 3/2) are strongly excited
almost independent of 〈βdia〉. In table 1, 〈βdia〉-dependence of
experimentally observed Fourier modes is summarized in such
MHD equilibria that the currentless approximation is suitable
(Ip/BT ∼ 10 kA T−1 where Ip and BT are the observed net
toroidal current and the vacuum toroidal fields, respectively).
Note that all the Fourier modes indicated in table 1 are not
necessarily observed in one shot. Which modes are observed
depends on the experimental conditions as is understood from
figure 1.

From table 1, it is understood that (1) although instabilities
with n/m = 1/2 resonating in the plasma core region
are observed in the relatively low 〈βdia〉, they disappear
as 〈βdia〉 increases beyond 2%, (2) the higher harmonics
are simultaneously excited at the plasma periphery with
�ι = 1 almost independent of 〈βdia〉 (in high density
operations, almost only n/m = 1/1 modes are observed) and
(3) instabilities resonating near the plasma boundary (n/m =
4/3, 3/2) are always excited almost independent of β values.
Note that the range of the Fourier modes analysed from the
magnetic probe data is limited especially for the poloidal mode
number m (for the toroidal mode number, all mode families in
LHD with M = 10 are covered; nf = 0 ∼ 5).

The standard examples of the magnetic signals observed
by the magnetic probes are shown in figure 2 for inward-
shifted LHD configuration with γc = 1.220. In this
configuration, the vacuum clear LCFS exists around �ιv ∼ 1.78
as is discussed in the next section. Comparing with shot
number 46346, the plasma in shot number 46337 corresponds
to a relatively high density case. It is understood that
the Fourier modes resonating nearer the plasma edge, for
example n/m = 2/1, 5/2, are significantly excited as the
density increases. Note that the resonant rational surfaces of
these two modes exist outside the vacuum LCFS (see next
section).

〈βdia〉-dependence of the observed Fourier modes of
the magnetic perturbations are summarized in table 2 in
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Figure 1. Time developments of the diamagnetic beta 〈βdia〉 (red line in the first row), line averaged electron density ne (blue line in the first
row) and Fourier decomposed perturbed poloidal field (root mean square in time interval of 10 ms) with n/m = 1/2, 1/1, 2/2, 3/3 (the
second row) and with n/m = 4/3, 3/2, 2/1 (the third row) observed by the magnetic probes, for shot number 44238 (left column) and shot
number 46465 (right column) in the inward-shifted LHD configuration with γc = 1.254 [9].

Table 1. 〈βdia〉-dependence of the experimentally observed Fourier modes of the perturbed magnetic field in the inward-shifted
configuration with γc = 1.254. Note that n/m = 2/1 modes sometimes observed are disregarded in this table [9–11].

Inward-shifted γc = 1.254 (m, n)

〈βdia〉 � 1.0% (2, 1) (1, 1)(2, 2)(3, 3) (3, 4) (2, 3)
1.0% � 〈βdia〉 � 2.0% (2, 1) (1, 1)(2, 2)(3, 3) (3, 4) (2, 3)
2.0% � 〈βdia〉 � 2.5% (1, 1)(2, 2)(3, 3) (3, 4) (2, 3)
2.5% � 〈βdia〉 � 3.2% (1, 1)(2, 2)(3, 3) (3, 4) (2, 3)

�ι = n/m 0.5 1.0 1.3 1.5

the inward-shifted configuration with γc = 1.220 for such
MHD equilibria that the currentless approximation is suitable
(Ip/BT ∼ 10 kA T−1). As well as the case for the configuration
with γc = 1.254, note that all the Fourier modes indicated
in table 2 are not necessarily observed in one shot. Which
modes are observed depends on the experimental conditions
as understood from figure 2.

It is understood from table 2 that (1) instabilities with
n/m = 1/2 excited in the plasma core region disappear as
β increases as well as the configuration with γc = 1.254,
(2) the higher harmonics are simultaneously excited at the
plasma periphery with �ι = 1 as well as the configuration with
γc = 1.254 and (3) instabilities resonating nearer the plasma
edge (n/m = 2/1, 5/2) are significantly excited together
with the disappearance of instabilities resonating at �ι = 1
as 〈βdia〉 increases, which is different from the configuration
with γc = 1.254. Moreover, in the experimental results up to
now, there is no indication that MHD activities by observed
perturbations limit reachable β value for both inward-shifted
configurations.

Properties of the observed MHD activities that (1)
instabilities with n/m = 1/2 in the core region disappear in
high β plasmas, (2) instabilities near the plasma boundary are
almost always excited independent of β values (instabilities
resonating beyond the vacuum LCFS are excited as β increases
for γc = 1.220) and (3) there is no tendency of the β limit by
MHD activities, must be closely related to the MHD equilibria.
Since MHD equilibrium is determined by the three conditions,
namely, the net toroidal current, the pressure profile and
the boundary condition, such conditions must be considered
from the experimental aspect as follows: MHD activities
summarized in tables 1 and 2 are picked up from MHD equili-
bria with Ip/BT ∼ 10 kA T−1, so that the currentless condition
becomes a good approximation [9]. There are experimentally
standard observations that the stochastic magnetic region
surrounding nested flux surfaces holds a temperature gradient,
that is, the electron temperature gradient exists beyond the
LCFS [7], and hollow electron density profiles are created
especially in high-β operations with a high NBI power and
a low magnetic field, the hollowness of which is strengthened
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Figure 2. Time developments of the diamagnetic beta 〈βdia〉 (red line in the first row), line averaged electron density ne (blue line in the first
row) and the Fourier decomposed perturbed poloidal field (root mean square in time interval of 10 ms) with n/m = 1/1, 2/2, 3/3 (the
second row) and with n/m = 4/3, 3/2, 2/1, 5/2 (the third row) observed by the magnetic probes, for shot number 46346 (left column) and
shot number 46337 (right column) in the inward-shifted LHD configuration with γc = 1.220 [9].

Table 2. 〈βdia〉-dependence of the experimentally observed Fourier modes of the perturbed magnetic field in the inward-shifted
configuration with γc = 1.220 [9–11].

Inward-shifted γc = 1.220 (m, n)

〈βdia〉 � 1.0% (1, 1)(2, 2)(3, 3) (2, 3)
1.0% � 〈βdia〉 � 2.0% (2, 1) (1, 1)(2, 2)(3, 3) (2, 3)
2.0% � 〈βdia〉 � 2.5% (2, 1) (1, 1)(2, 2)(3, 3) (2, 3)
2.5% � 〈βdia〉 � 3.0% (1, 1)(2, 2)(3, 3) (2, 3)
3.0% � 〈βdia〉 � 3.5% (1, 1)(2, 2)(3, 3) (2, 3) (1, 2) (2, 5)
3.5% � 〈βdia〉 � 4.3% (2, 3) (1, 2) (2, 5)

�ι = n/m 0.5 1.0 1.5 2.0 2.5

as the density increases [8]. In the high-β operation in the
inward-shifted LHD configuration, the low magnetic field
with B ∼ 0.5 T is usually used and a high power NBI
with beam energy 120–150 keV is introduced into a target
plasma created by ECH. It might be expected that the orbit
excursion of high energy ions is fairly large due to the high
energy and the low magnetic field. The NBI does not act as
beam fuelling. High-β plasmas are achieved by introducing
a gas puffing into NBI-heated plasmas from the first wall
side. Introduction of cold neutral gas into a NBI-heated
plasma leads to the formation of a hollow density profile
through ionization and making the plasma near the stochastic
field region cool down. Therefore, it is considered that the
pressure profile is broad with a steep gradient near the plasma
boundary and the plasma boundary is beyond the last close
flux surface of the vacuum magnetic field. Comparing the
equilibrium database with the pressure profile created by the
measured hollow electron density profile ne, the measured
electron temperature Te and the ion temperature assumed to
be Ti ∼ Te, an essential factor of the pressure profile of high-β

plasmas in the inward-shifted LHD configuration is considered
to be P(s) ∼ P(0)(1 − s), where s is the normalized toroidal
flux and the plasma boundary (s = 1) is considered to be
beyond the vacuum LCFS.

Moreover, there are two gradient scales in the stochastic
region, as is shown in figure 4 in [7] and the typical electron
temperature in the region with a long gradient scale is around
less than 50eV. Introduction of cold neutral gas into a NBI-
heated plasma makes the plasma near the stochastic field region
cool down, leading to the two gradient scales of the electron
temperature. As a result, low temperature and high density
plasmas with a hollow density profile are created around or
beyond the vacuum LCFS. For typical electron temperature
(50 eV) and density (1×1019 m−3), the parallel mean free path
λ‖ is around 3 m, which is smaller than the typical shortest
vacuum connection length of 10 m in the stochastic region
beyond the vacuum LCFS. Such a short connection length
corresponds to the length of one poloidal turn of the magnetic
field with �ι ∼ 2. The pressure gradient beyond the vacuum
LCFS is mainly determined by the parallel and perpendicular
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Figure 3. Normalized growth rate by the poloidal Alfvén transit time on the magnetic axis γ τA0 versus β for 5 mode families nf = 1–5.
Circles (triangles) indicate interchange (ballooning) modes. Green (blue) corresponds to γc = 1.254 (γc = 1.220). For γ = 1.254, nf = 5
mode family is not calculated.

transport in such closed or open stochastic field lines. This
situation determining the MHD equilibrium surrounded by the
stochastic magnetic field lines is completely different from the
determination of the tokamak MHD equilibrium with clear flux
surfaces and separatrix.

Before starting LHD experiments, theoretical consider-
ations on MHD stability are performed on the basis of the
conjecture that the plasma does not expand beyond the clear
vacuum LCFS, so that MHD equilibria are obtained under the
fixed boundary condition determined from the clear vacuum
LCFS [5], or free boundary MHD equilibria are obtained using
an artificial material limiter determined from the clear vacuum
LCFS at the outboard of the horizontally elongated poloidal
cross section [6]. After LHD experiments, such conjecture
on the plasma boundary has still been used, because to sys-
tematically determine the plasma boundary of high β plasma,
reflecting the peripheral transport in the stochastic magnetic
field region is very difficult from both the theoretical and the
experimental points of view, except for some special cases (ex-
perimentally, reconstruction of the MHD equilibrium is possi-
ble in shot by shot). Only the experimental conditions related
to the net toroidal current and the pressure profile are reflected
to determine the MHD equilibria in the standard MHD stabil-
ity analyses [3, 4]. Examples of such standard analyses based
on the conjecture on the plasma boundary that the plasma does
not expand beyond the clear vacuum LCFS are presented using
fixed boundary currentless MHD equilibria with the pressure
profile expressed as P(s) = P(0)(1 − s)(1 − sα), where s is
the normalized toroidal flux and α is usually 4 or 9. The fac-
tor α is introduced so as to eliminate the surface terms of the
potential δWs from the variational principle in the linearized
ideal MHD stability analyses. One example of the standard
linearized ideal MHD stability analyses with α = 9 is shown
in figure 3, where the fixed boundary MHD equilibria are used
in the inward-shifted LHD configurations with γc = 1.254 and
γc = 1.220. The rotational transforms at the plasma boundary
are �ιv = 1.48 for γc = 1.254 and �ιv = 1.77 for γc = 1.220.
Both �ιv are near the clear vacuum LCFS. Incompressible per-
turbations are assumed under the free boundary condition. The

Table 3. β-dependence of the most dominant Fourier modes in fixed
boundary equilibria for vacuum boundary with �ιv = 1.48 for
inward-shifted configuration with γc = 1.254 (upper) and in fixed
boundary equilibria for vacuum boundary with �ιv = 1.77 for
inward-shifted configuration with γc = 1.220 (lower).

γc = 1.254 Most dominant Fourier mode (m, n) for each n

β = 1% (2, 1) (5, 2) (8, 3) (11, 4)
β = 2% (2, 1) (4, 2) (6, 3) (8, 4)
β = 3% (2, 1) (3, 2) (5, 3) (6, 4)
β = 4% (2, 1) (3, 2) (4, 3) (6, 4)

γc = 1.220 Most dominant Fourier mode (m, n) for each n
β = 1% (2, 1) (4, 2) (6, 3) (9, 4) (11, 5)
β = 2% (2, 1) (4, 2) (6, 3) (7, 4) (9, 5)
β = 3% (2, 1) (3, 2) (5, 3) (6, 4) (8, 5)
β = 4% (2, 1) (3, 2) (4, 3) (5, 4) (6, 5)

growth rate γ is normalized by the poloidal Alfvén transit time
defined as τA ≡ √

µ0ρm/(2π �ι) dV/d
T, where ρm, V and 
T

are the mass density, the plasma volume and the toroidal flux,
respectively.

Asβ increases, the growth rates increase monotonically up
to γ ∼ 1/τA0 at β ∼ 4%. The corresponding most dominant
Fourier modes for each toroidal mode number n are denoted in
table 3 (see the section 5.2 for the classification by the toroidal
mode number).

The discrepancy on MHD instabilities between experi-
mental results and theoretical results is quite clear. In the case
of used fixed boundary equilibria, the rational surface with
�ι = 1/2 does not disappear even if β increases, leading to the
strong excitation of n/m = 1/2 modes with the global radial
structure. Moreover, monotonic increase of the growth rates
up to γ ∼ 1/τA0 with respect to β is unlikely to occur in the
experiments; otherwise strong confinement degradation or β

limit will be observed in high-β experiments. Since the main
difference of the MHD equilibria between theoretical analyses
and experimental results is considered to be the treatment of
the boundary condition between plasma and vacuum, proper-
ties of the peripheral magnetic field are investigated in the next
section in order to relax the discrepancy on the MHD equilibria
between experimental results and theoretical consideration.
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Figure 4. Poincare plots of the peripheral vacuum magnetic field at the horizontally elongated LHD poloidal cross section for
inward-shifted with γc = 1.254 (upper left), inward-shifted with γc = 1.220 (upper right), standard (lower left) and outward-shifted (lower
right) configurations. In the Poincare plots, the contours of the magnetic field strength and the shape of helical coils consisting of three
layers are also shown by the thin and thick solid lines, respectively.

3. Consideration on MHD equilibria

3.1. Properties of the peripheral magnetic field in vacuum

In order to consider more consistent MHD equilibria between
experiments and theory, properties of the peripheral stochastic
magnetic field in the inward-shifted LHD configuration are
investigated, taking account of the experimental observation
that the stochastic magnetic region surrounding nested flux
surfaces holds confinement properties or temperature gradient
[7]. In order to understand the properties of the peripheral
stochastic magnetic field, the Poincare plots of the peripheral
vacuum magnetic field at the horizontally elongated LHD
poloidal cross section are shown in figure 4, for inward-
shifted with γc = 1.254 (upper left), inward-shifted with
γc = 1.220 (upper right), standard (lower left) and outward-
shifted (lower right) configurations. From these figures, it
is understood that the width of the peripheral region with
stochastic magnetic field lines changes from thick to thin
according to the vacuum magnetic axis shift from outboard
to inboard of the torus. The inward-shifted configuration is
characterized as the configuration with the thinnest peripheral
stochastic layer. Thus, it might be considered that the level of

the stochasticity or the degree of the perturbed magnetic field
is smallest in the inward-shifted configuration compared with
the standard and outward-shifted configurations.

Moreover, the width of the stochastic layer strongly
depends on the coil inverse aspect ratio γc. The smaller coil
inverse aspect ratio makes a thinner stochastic layer. The
helical coils of LHD are wound with such a pitch modulation
as to make the plasma volume large, as is understood from
the relative position of the helical coils in the poloidal cross
section. Thus, inward-shift of the vacuum magnetic axis
means the recovery of the helical symmetry under the pitch
modulation of helical coils to some extent. This recovery
of the helical symmetry is strengthened by the smaller coil
inverse aspect ratio. The corresponding connection length
(toroidal turn) Lc and vacuum rotational transform �ιv are shown
in figure 5 for the inward-shifted LHD configuration with
γc = 1.254 (left) and γc = 1.220 (right).

The lower rows of figure 5 indicate that the connection
length (toroidal turn) of the magnetic field lines started from
the equatorial plane (z = 0) as a function of the major radius R.
The corresponding vacuum rotational transform �ιv is denoted
in the upper rows of figure 5, where �ιv is set 0 when the
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Figure 5. The vacuum rotational transform �ιv (upper rows) and the connection length (toroidal turn) Lc (lower rows) as a function of the
major radius R for inward-shifted LHD configuration with γc = 1.254 (left columns) and with γc = 1.220 (right columns) corresponding to
figure 4.

Table 4. Characteristics of the peripheral magnetic field of the inward-shifted LHD configuration corresponding to figures 4 and 5 for
γc = 1.254 and γc = 1.220, where �ιv and Lc are the vacuum rotational transform and the connection length of the magnetic field lines.

γc = 1.254 γc = 1.220

Range of �ιv Character of Lc Range of �ιv Character of Lc

�ιv � 1.48 Clear flux surfaces �ιv � 1.78 Clear flux surfaces
1.48 < �ιv � 1.58 Long Lc 1.78 � �ιv � 1.85 Long Lc

1.58 < �ιv � 2.00 Short Lc 1.85 � �ιv � 2.00 Short Lc

2.00 < �ιv Very short Lc �ιv = 2.00 Clear islands
2.00 � �ιv � 2.50 Short Lc

2.50 � �ιv Very short Lc

connection length is shorter than one toroidal turn. From these
two types of figures, it is understood that the region with a fairly
long connection length (more than 100 toroidal turns ∼2.2 km)
is limited by magnetic islands with �ιv = 30/19 ∼ 1.58,
and a clear LCFS might be chosen around �ιv = 1.48 near
the magnetic island with �ιv = 30/20 in the inward-shifted
configuration with γc = 1.254. This tendency does not change
even if magnetic field lines are followed more, for example,
1000 toroidal turns ∼22 km. The properties of the peripheral
magnetic field are summarized in table 4. In the case of the
configuration with γc = 1.220, clear magnetic islands with
�ι = 2.0 exist. The rotational transform of the separatrix of
the straight helical with M = 10 and L = 2 is 5 = M/L.
Recovery of the helical symmetry in the configuration with
γc = 1.220 leads to the existence of the stiff magnetic islands.
This stiffness of the peripheral magnetic field might be related

to exciting the perturbation with Fourier modes resonating at
high rotational transforms beyond LCFS, namely �ι = 2, 2.5,
in table 2.

3.2. Properties of the peripheral magnetic field in finite β

equilibria

Even if there is no net toroidal current, there is a case
while the Pfirsh–Schlüter current changes the magnetic field
structure significantly. In the case of planar axis heliotron
configuration like LHD, the Pfirsh–Schlüter current has fairly
large axisymmetric components and small non-axisymmetric
components. The former makes a large Shafranov shift in the
major radius direction, and the latter leads to a formation of
magnetic islands and stochastic regions or healing of magnetic
islands [15]. Properties of the peripheral magnetic field of
finite-β MHD equilibria are investigated using HINT2 code
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Figure 6. Poincare plots of the magnetic field lines in the horizontally elongated LHD poloidal cross section (the first rows), and the
corresponding connection length Lc/103 m (the second rows), rotational transform �ι (the third rows) and pressure P for β = 1.8% (the first
columns) and β = 3.6% (the second columns) versus the major radius R in the inward-shifted LHD configuration with γc = 1.254. The
vertical dotted line indicates the position near the last close flux surface.

(a new version of the original HINT code [16]). Although
the boundary of the calculation box of HINT or HINT2
is assumed to be a perfect conductor, the obtained MHD
equilibrium is a free boundary equilibrium because no fixed
boundary condition is introduced between the plasma region
and the vacuum region. Figure 6 shows the Poincare plots
of the magnetic field lines (the first rows), the connection
length Lc/103 m (the second rows), the rotational transform
�ι (the third rows) and the pressure profile P as a function
of the major radius R for β = 1.8% (the first columns)
and β = 3.6% (the second columns) in the inward-shifted
configuration with γc = 1.254, where the initial pressure

profile for HINT2 is chosen as P(s) = P0(1 − s)(1 − s4).
The final pressure profile is similar to the initial profile but not
the same.

As β increases, the width of the peripheral magnetic
islands becomes wide, and a stochastic magnetic field is created
near the plasma periphery through island-overlapping. Such
a stochastic region penetrates from the plasma peripheral
region to the core region, as β increases. The same figures
are shown in figure 7 for the inward-shifted configuration
with γc = 1.220. Comparing figures 6 and 7, it is
understood that the Shafranov shift is fairly large even in
low-β and that the Shafranov shift in the configuration with
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Figure 7. Poincare plots of the magnetic field lines in the horizontally elongated LHD poloidal cross section (the first rows), and the
corresponding connection length Lc (the second rows), rotational transform �ι (the third rows) and pressure P for β = 1.8% (the first
columns) and β = 3.5% (the second columns) versus the major radius R in the inward-shifted LHD configuration with γ = 1.220. The
vertical dotted line indicates the position near the last close flux surface.

γc = 1.220 is smaller than that in the configuration with
γc = 1.254.

In both configurations, the pressure almost vanishes and
the rotational transform �ι has a value similar to that in the
vacuum at the LCFS when β is relatively low. As β increases,
although the pressure and pressure gradient still remain in the
stochastic region with a fairly long connection length, LCFS
shrinks (the position of R of the LCFS outside the torus denoted
by the dotted line moves inwardly, as is shown in figures 6 and
7) and the rotational transform �ι at the LCFS becomes quite

low, as is understood from the comparison between low-β and
high-β equilibria in figures 6 and 7.

These properties are closely related to the HINT or
HINT2 algorithm. In the HINT2, as well as the HINT code,
a relaxation method is used in order to obtain the MHD
equilibrium without the assumption of the nested flux surfaces.
The relaxation method is an iterative method consisting of
(1) parallel relaxation of the pressure along fixed magnetic field
lines and (2) perpendicular relaxation of the magnetic field for
the fixed pressure profile. In the parallel relaxation process of
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the pressure, the values of the pressure P on all the Eulerian
grid points (u1, u2, u3) are replaced by the averaged values
using field line tracing. Moreover, when the turn number of the
magnetic field line in the toroidal direction is typically smaller
than one, the pressure at the starting grid is replaced by 0. Thus,
when the level of stochasticity becomes higher according to β,
the number of toroidal turns becomes less than one at many
grid points, leading to a strong reduction of the pressure in the
stochastic region. Corresponding to the pressure deformation,
the rotational transform �ι at the LCFS is significantly reduced
as β increases.

In the HINT code, physical transport processes are not
included, but non-physical transport process is included in
such a way that the value of pressure on the grid points is
replaced by 0 when the field line on the grid reaches the
calculation box in less than one toroidal turn. This process
is interpreted as a very fast parallel thermal transport process
that the pressure will be lost very quickly, namely χ‖ → ∞,
when the magnetic field lines reach the wall in less than one
toroidal turn. Thus, the present algorithm of HINT or HINT2
is not applicable to inward-shifted LHD experiments with
the experimental observation that the pressure gradient still
survives in the stochastic magnetic field beyond the vacuum
LCFS. Moreover, even in the algorithm used in [17, 18], the
similar shrink of the LCFS might be expected in the case of
LHD, because the transport process in the stochastic magnetic
region is not included. Improvement of the HINT algorithm so
as to include the peripheral transport process is now underway.
The function in the parallel relaxation of the pressure for fixed
magnetic field in the present HINT or HINT2 is expressed as

Pnew(
x) =
∫ 
xend


x FPold(dl/B)∫ 
xend


x (dl/B)
, (1)

where dl is the line element along the magnetic field line
starting from 
x and F is a weight function:

F =
{

1 for |u3
end − u3| � 2π,

0 for |u3
end − u3| < 2π,

(2)

where u3 and u3
end are the toroidal angles at the starting point


x and ending point 
xend, respectively. Thus, by changing the
weight function F as a function of the connection length or
the number of toroidal turns, taking account of the transport in
the stochastic region, we might introduce the transport in the
stochastic magnetic field region into the MHD equilibrium.
As a more complicated way, introducing an anisotropic
pressure is also considered. These results will be presented
elsewhere.

3.3. Determination of MHD equilibria

Even if the facts that a small change of the pressure profile
keeping the key factor (1 − s) alters the stability properties
and that the range of the observed Fourier modes is limited are
taken into account, the discrepancy on MHD stability between
experimental results and standard ideal MHD analyses based
on the fixed boundary MHD equilibria cannot be removed.
Especially, a significant monotonic increase in the linear
growth rate with β and disappearance of n/m = 1/2 modes
in high β plasma cannot be explained in the framework of the

standard stability analyses based on the fixed boundary MHD
equilibria. In order to remove the discrepancy, more correct
treatment of the plasma boundary should be considered. On the
other hand, the plasma boundary surrounded by the stochastic
magnetic field is considered to be essentially determined
by the transport in the stochastic region including open
magnetic field lines. In the three-dimensional configuration
without toroidal symmetry, the determination of the plasma
boundary by the transport is very complicated compared with
tokamaks with clear flux surfaces and separatrix. Since, at
present, the clear systematic way of how to experimentally or
theoretically determine the plasma–vacuum boundary is not
established (indeed, the trail to introduce the transport process
into equilibrium code HINT2 has just started), the concept
of averaged flux surfaces is introduced. The averaged flux
surfaces are defined in the stochastic magnetic field region
as surfaces with a long connection length compared with
the parallel mean free path, a definite rotational transform
and a small electron thermal conductivity. The averaged
flux surfaces are assumed to exist in the region with the
stochastic magnetic field in order to take into account the
experimental fact that the pressure gradient exists beyond
the vacuum LCFS [7, 8]. Such averaged flux surfaces are
considered to be created by the synergetic effects between
the change of the magnetic field in the stochastic region
by the plasma Pfirsh–Schlüter current and transport process
in the stochastic region. Once such averaged flux surfaces
are assumed to exist, then plasma could move into such
averaged flux surfaces in order to take the MHD force balance,
which allows the boundary modulation, namely change of the
boundary shape and shift of the boundary. As is understood
from the optimization of the three-dimensional system, the
boundary modulation will bring significant effects to MHD
stability.

Plasma motion based on the averaged flux surfaces
will be realized by the free boundary MHD equilibrium
calculation assuming the nested flux surfaces. Since there
is no clear information on the total toroidal flux inside the
plasma, several vacuum boundaries are chosen under the
assumption that the total toroidal flux is conserved, taking
account of the information of the vacuum peripheral magnetic
field and the experimental fact that pressure gradient exists
beyond the vacuum LCFS [7, 8]. For the inward-shifted
LHD configuration with γc = 1.254, three different plasma
boundaries are chosen from a clear vacuum flux surface
with �ιv = 1.48, near the vacuum LCFS with �ιv = 1.58
and outside the vacuum LCFS with �ιv = 1.72, and for
the inward-shifted configuration with γc = 1.220, three
different plasma boundaries are chosen from a clear vacuum
flux surface with �ιv = 1.77, near the vacuum LCFS with
�ιv = 1.83 and outside the vacuum LCFS with �ιv = 2.19. The
corresponding minimum and maximum positions in the major
radius direction, Rmin and Rmax, at the horizontally elongated
poloidal cross section are Rmin = 2.75 (m) and Rmax =
4.50 (m) for �ιv = 1.48, Rmin = 2.72 (m) and Rmax = 4.52 (m)
for �ιv = 1.58 and Rmin = 2.68 (m) and Rmax = 4.56 (m) for
�ιv = 1.72, respectively, for the inward-shifted configuration
with γc = 1.254. For the inward-shifted configuration with
γc = 1.220, Rmin = 2.74 (m) and Rmax = 4.51 (m) for
�ιv = 1.77, Rmin = 2.73 (m) and Rmax = 4.52 (m) for �ιv = 1.83
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and Rmin = 2.65 (m) and Rmax = 4.58 (m) for �ιv = 2.19,
respectively. Hereafter, MHD equilibria are distinguished
by the vacuum rotational transform at the plasma–vacuum
boundary �ιv and the inverse coil aspect ratio γc.

According to the experimental observation discussed in
the previous section, the currentless condition and the pressure
profile P(s) = P0(1 − s)(1 − sα) with α = 9 are used,
where s is the normalized toroidal flux, which is related to
the normalized minor radius ρ as s = ρ2. The coefficient
P0 is controlled in the changing β value. As discussed in
the previous section, the essential form of the experimentally
obtained pressure profile is P(s) ∼ P(0)(1 − s). The factor
(1 − s) in the expression of (1 − sα) is introduced in order
to remove the surface potential term of δWs in the variational
principle, because δWs is not included in cas3d3 [14]. The
power of α = 9 in the expression of (1 − sα) is chosen in
order to keep the fairly steep pressure gradient near the plasma
boundary. When α is decreased, say α = 4, the pressure
gradient near the plasma boundary decreases, which will
increase the discrepancy between experimental observations
and theoretical consideration. In the case of α = 4, however,
the qualitative properties do not change from the case with
α = 9.

The free boundary MHD equilibria are calculated using
vmec code [13]. The resultant free boundary MHD equilibria
have the extended minimum and maximum positions in the
major radius direction at the horizontally elongated poloidal
cross section. For β = 4% in the inward-shifted configuration
with γc = 1.254, Rmin = 2.90 (m) and Rmax = 4.77 (m)
for �ιv = 1.48, Rmin = 2.87 (m) and Rmax = 4.79 (m)
for �ιv = 1.58 and Rmin = 2.82 (m) and Rmax = 4.83 (m)
for �ιv = 1.72, respectively. For β = 4% in the inward-
shifted configuration with γc = 1.220, Rmin = 2.86 (m)
and Rmax = 4.74 (m) for �ιv = 1.77, Rmin = 2.84 (m) and
Rmax = 4.75 (m) for �ιv = 1.83 and Rmin = 2.78 (m) and
Rmax = 4.80 (m) for �ιv = 2.19, respectively. Comparing
Rmin and Rmax between the vacuum and the finite-β equilibria
with β = 4%, it is understood that the whole plasma
including the boundary moves outwardly. These maximum
positions Rmax are fairly outside the LCFS determined
from the vacuum magnetic field in figure 5, however, they
are still included in the experimentally obtained plasma
region [7].

The obtained MHD equilibria might be valid for the
stability analyses for low-n modes with n < M , because
the minimum toroidal mode number of the rational surfaces
with magnetic islands is the same as the toroidal field period
M(= 10) of the LHD. High-mode-number modes with n � M

will be affected by the fine structure of the magnetic islands.
In order to distinguish effects of the boundary modulation
of the free boundary MHD equilibrium on MHD stability
from stability properties in the fixed boundary MHD equilibria
without the boundary modulation, MHD equilibria under the
fixed boundary condition are created, where the plasma–
vacuum boundary in the stochastic magnetic field region is
determined from the boundary of the free boundary MHD
equilibrium with quite a low plasma pressure. Note that for
sufficiently small pressure, the whole plasma hardly moves
even for free boundary condition.

4. Properties of boundary spectra

MHD equilibria assuming the nested flux surfaces are
described by the magnetic coordinates (s, θ, ζ ), where θ and ζ

are poloidal and toroidal angles, respectively. Using the double
periodicity in both poloidal and toroidal directions, the plasma
boundary is Fourier decomposed as

R(θ, ζ ) = Rmn cos(mθ + nζ ),

Z(θ, ζ ) = Zmn sin(mθ + nζ ),
(3)

where m and n = Mi are poloidal and toroidal mode numbers,
respectively, and M (=10 for LHD) is the toroidal field period
and i is an integer. In the case of vmec code, ζ is the
geometrical angle of the cylindrical coordinates (R, ϕ, Z),
namely, ζ = ϕ. Since the Fourier spectrum of the boundary
does not change for the fixed boundary MHD equilibria as β

increases, the change of the Fourier spectrum of the boundary
in the free boundary MHD equilibrium clearly reflects the
change in the properties of the whole Fourier spectrum by the
free boundary motion of the equilibrium plasma. Figure 8
shows how the dominant Fourier components, except for
(m, n) = (0, 0) and (m, n) = (1, 0) modes, change according
to the β value in three MHD equilibria with different plasma–
vacuum boundaries denoted by �ιv for the inward-shifted
configuration with γc = 1.254. Independent of the choice of
the vacuum boundary, Fourier spectra of the plasma boundary
show similar changes, which are brought about by a Shafranov
shift of a whole plasma. The most significant changes appear
in poloidally symmetric components denoted by blue symbols
in figure 8.

To clarify the cause of the change in the poloidally
symmetric components shown in figure 8, dominant boundary
spectra of vacuum configurations with different vacuum
magnetic axes Rva are drawn in figure 9. Changes of the
boundary spectrum by vacuum magnetic axis shift mainly
appear in poloidally symmetric components with (m, n) =
(0, �= 0), as well as those by a large Shafranov shift in
the inward-shifted configuration shown in figure 8. It is
understood from the comparison between figures 8 and 9 that,
in the inward-shifted LHD configurations, the vacuum flux
surfaces are so compressed into the helical coils at the inner
side of torus by the external coil current that the poloidally
symmetric deformation of the plasma boundary is strongly
enhanced. As β increases, the whole plasma moves from
the inner side of the torus to the outer side. Through this
Shafranov shift, the enforced boundary shaping by the external
coil current will be so reduced that the poloidally symmetric
deformation of the plasma boundary will diminish. In
other words, a large internal plasma current (Pfirsch–Schlüter
current) makes the opposite deformation of the boundary to that
by the external coil current. These properties in the inward-
shifted configuration with γc = 1.254 hold in the inward-
shifted configuration with γc = 1.220.

5. Properties of the ideal MHD stability in the
inward-shift LHD configurations

In the previous section, it is shown that free boundary
motion of the equilibrium plasma significantly changes the
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Figure 8. β-dependence of dominant boundary spectra, except for (m, n) = (0, 0) and (m, n) = (1, 0), for three MHD equilibria with
different vacuum boundaries, namely, �ιv = 1.48 (the first column), �ιv = 1.58 (the second column) and �ιv = 1.72 (the third column) in the
inward-shifted configuration with γc = 1.254. Triangles and circles indicate Zmn and Rmn components in equation (3). Blue, red, green and
yellow symbols denote poloidally symmetric components with (m, n) = (0, �= 0), components with (m, n) = (�= 0, 10), axisymmetric
components with (m, n) = (�= 0, 0) and components with (m, n) = (�= 0, 20), respectively. Note that in MHD equilibria with the fixed
boundary, the boundary spectra do not change with β, and the boundary spectra correspond to the case of β = 0 in these graphs.
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Figure 9. Vacuum magnetic axis Rva dependence of dominant
boundary Fourier spectra except for (m, n) = (0, 0) and
(m, n) = (1, 0). Three vacuum configurations, namely,
inward-shifted with Rva = 3.6 m with γc = 1.254, standard with
Rva = 3.75 m, outward-shifted with Rva = 3.9 m configurations are
used. Triangles and circles indicate Zmn and Rmn components in
equation (3). Blue, red, green and yellow symbols denote poloidally
symmetric components with (m, n) = (0, �= 0), components with
(m, n) = (�= 0, 10), axisymmetric components with
(m, n) = (�= 0, 0) and components with (m, n) = (�= 0, 20),
respectively.

boundary spectrum or makes the boundary modulation, which
means that the geometrical influences on MHD stability
might change significantly. Indeed, the optimization of the
three-dimensional magnetic configuration has been done by

controlling the boundary shape [12]. In the case of the planar
axis Heliotron configurations with a large Shafranov shift or
a large internal current (Pfisch–Schlüter current), not only the
external coil current but also internal plasma current changes
the boundary shift and the boundary shape so much that the
resultant MHD stability significantly depends on the boundary
modulation. To see how much the boundary modulation of
MHD equilibrium influences the MHD stability, linearized
ideal MHD stability analyses are performed.

5.1. Effects of boundary modulation on equilibrium quantities

The influences of the boundary modulations of MHD equilibria
on equilibrium quantities are examined. Figure 10 shows the
β-dependences of the rotational transform �ι (the first columns),
the magnetic well V ′(ρ)/V ′(0) − 1 (the second columns)
and the Mercier criterion DI (the third columns) for fixed
(the first rows) and free (the second rows) boundary MHD
equilibrium with vacuum rotational transform at the boundary
being �ιv = 1.48 in the inward-shifted configuration with
γc = 1.254 and for free boundary MHD equilibrium with
�ιv = 1.83 in the inward-shifted configuration with γc = 1.220
(the third rows), where V is the plasma volume and V ′ ≡
dV/ds. In other equilibria with different �ιv in two inward-
shifted configurations, the properties shown in figure 10 do not
change qualitatively. There are two main crucial differences
between MHD equilibria with the fixed boundary and those
with free boundary, from the aspect of MHD stability. One
is the β-dependence of �ι, and the other is β-dependence of
DI . The rotational transform �ι does not change so much
in the fixed boundary MHD equilibria. In contrast, in the
free boundary equilibria, �ι changes so significantly due to the
whole plasma motion that the dangerous low rational surface
with �ι = 1/2 disappears, as β increases, which is consistent
with the experimental observation given in tables 1 and 2.
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Figure 10. β-dependences of the rotational transform �ι (the first columns), the magnetic well V ′(ρ)/V ′(0) − 1 (the second columns) and
the Mercier criterion DI (the third columns) for fixed (the first row) and free (the second row) boundary MHD equilibria with �ιv = 1.48 in
the inward-shifted configuration with γc = 1.254 and for MHD equilibrium with �ιv = 1.83 in the inward-shifted configuration with
γc = 1.220 (the third row). Blue, green, yellow and red lines correspond to β = 1%, 2%, 3% and 4%, respectively.

The average magnetic well in the free boundary equilibria
becomes deeper and wider than that in the fixed boundary
equilibria as β increases, leading to significant improvement of
the Mercier criterion in the free boundary equilibria compared
with that in the fixed boundary equilibria, where the negative
(positive) sign of the Mercier criterion DI corresponds to the
Mercier stable (unstable) situation. In the inward-shifted LHD
configurations, the Mercier unstable region extends in a whole
plasma region at low-β due to the magnetic hill created by the
vacuum magnetic field and moves to the plasma periphery due
to the magnetic well formation in the plasma core region by a
large Shafranov shift, as β increases. For the fixed boundary
MHD equilibria, however, the Mercier criterion is not easy to
improve as β increases. In contrast, DI is easy to improve
for free boundary MHD equilibria. Comparing figure 10
with the first column of figure 8, it is understood that the
significant improvement of DI mainly comes from the change
of the plasma boundary (reduction of poloidally symmetric
components) brought about by the free boundary motion of
the MHD equilibrium. Although the magnetic well formation
in the plasma core region is brought about by a large Shafranov
shift even for fixed boundary MHD equilibria, such influences
on the Mercier stability do not become effective compared with
free boundary equilibrium, because the geometrical change is

not allowed near the plasma boundary. Note that the changes
in �ι and DI become significant for β � 2%. Comparing free
boundary equilibrium in the inward-shifted configuration with
γc = 1.254 (the second rows) and free boundary equilibrium
in the inward-shifted configuration with γc = 1.220 (the third
rows), MHD equilibria in the inward-shifted configuration
with γc = 1.220 are more unstable than those in the inward-
shifted configuration with γc = 1.254 from the aspect of
the Mercier criterion, which comes from the fact that the
magnitude of the Shafranov shift in MHD equilibria in the
inward-shifted configuration with γc = 1.220 is smaller than
that in MHD equilibria in the inward-shifted configuration with
γc = 1.254, as is understood from the comparison between
figures 6 and 7.

5.2. Effects of boundary modulation on the global mode
analyses in the configuration with γc = 1.254

As understood from the differences of the Mercier criterion
between fixed and free boundary MHD equilibria, the
influences of the boundary modulation (reduction of the
poloidally symmetric components) by the internal current,
namely the Pfirsch–Schlüter current, are considered to be
significant on the global ideal modes. In order to confirm this
expectation, the global mode stability analyses are performed
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Figure 11. Normalized growth rate γ τA0 versus toroidal mode number n for MHD equilibria (β = 3%) with fixed boundary (the first and
the second columns) and with free boundary (the third and the fourth columns). Global mode stability analyses are performed for fixed
boundary condition with ξ s(a) = 0 (the first and the third columns) and for free boundary condition with ξ s(a) �= 0 (the second and the
fourth columns). Blue, green and red colours correspond to the MHD equilibria with the vacuum rotational transform at the plasma
boundary being �ιv = 1.48, �ιv = 1.58 and �ιv = 1.72, respectively. Circles (triangles) denote interchange (tokamak-like ballooning) modes.
The squares indicate the ballooning-like structure induced by the free boundary motion with ξ s(a) �= 0.

in the inward-shifted configuration with γc = 1.254 under the
free boundary condition with ξ s ≡ 
ξ · ∇s �= 0 at the plasma
boundary (ξ s(a) �= 0) or under the fixed boundary condition
with ξ s ≡ 
ξ · ∇s = 0 at the plasma boundary (ξ s(a) = 0),
using cas3d3 code [14], where 
ξ is the displacement vector
and ξ s(a) indicates the normal (radial) displacement ξ s at the
plasma–vacuum boundary. The mass density ρm is assumed
to be uniform, which is consistent with the experimental
observation except that density very near the plasma boundary.
Incompressible perturbations are mainly used, in order to
simply evaluate the effects of the ion diamagnetic rotation
using the eigenvalues obtained by cas3d3. Since the stability
of the MHD equilibrium is only determined by the sign of the
potential energy δWP, the MHD equilibrium is stable (unstable)
for the perturbations with δWP > 0 (δWP < 0) and the
kinetic energy is usually evaluated using such a reduced form
that the matrix expressing the kinetic energy is diagonalized.
However, in the present analyses, the kinetic energy is correctly
evaluated using the perpendicular displacement 
ξ⊥, namely,
δWK = ∫

(ρm/2)|
ξ⊥|2 dτ , and so the growth rate γ has the
correct physics dimension and the magnitude corresponds to
the incompressible limit of the compressible perturbation. The
growth rate of the incompressible perturbation is two or three
times that of the corresponding compressible perturbation [3].

In the case of the three-dimensional equilibria, the
linear perturbations couple with equilibrium through both
poloidal and toroidal mode couplings. For three-dimensional
configurations with M toroidal field period, there are M/2 + 1
mode families [14]. These mode families are independent in
the linear phase and correspond to the toroidal mode number
n of the linear perturbations in axisymmetric configurations.
In the present case, there are M/2 + 1 = 6 mode families,
namely nf = 0, 1, 2, 3, 4 and 5. For example, nf = 1

mode family consists of the toroidal mode numbers with n =
1, 9, 11, 19, . . . , namely, the linear eigenfunction belonging
to nf = 1 mode family consists of multiple toroidal mode
numbers. For a Mercier unstable region, however, the toroidal
mode coupling of perturbations inherent to helical systems
becomes so weak that the toroidal mode number n(�M) can be
used as a good quantum number as well as axisymmetric tori,
because every magnetic field line at a Mercier unstable rational
surface has an unfavourable magnetic curvature on average.
Namely, all the magnetic field lines might be considered as
equivalent for the perturbations with n(�M) from the aspect
of the magnetic curvature, so that such perturbations cannot
feel the difference of the magnetic curvature in the toroidal
direction [19, 20]. In the Mercier unstable MHD equilibria
considered here, the toroidal mode number of the perturbations
n(�M) acts as a good quantum number.

Figure 11 shows the comparison of global mode stability
analyses between fixed (the first and the second columns)
and free (the third and the fourth columns) boundary MHD
equilibria with β = 3% for three types of MHD equilibria
with different plasma–vacuum boundary denoted by �ιv. The
global mode stability analyses are performed for the fixed
boundary condition with ξ s(a) = 0 (the first and the third
columns) and the free boundary condition with ξ s(a) �= 0
(the second and the fourth columns), where the growth rates
of the most unstable modes normalized by the Alfvén transit
time on the magnetic axis γ τA0 are drawn with respect to the
toroidal mode number n, where τ ≡ √

µ0ρm/(2π �ι) dV/d
T

with the toroidal flux 
T and the permeability in the vacuum
µ0. For typical high-β LHD operation parameters with the
field strength B ∼ 0.5 T and proton density ne ∼ 3×1019 m−3,
γ τA0 = 0.1 corresponds to around 40 µs. The most dominant
Fourier modes corresponding to figure 11 are summarized in
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Table 5. The most dominant Fourier modes for fixed (ξ s(a) = 0) and free (ξ s(a) �= 0) boundary stability analyses in fixed and free
boundary equilibria with β = 3%. The arrow indicates that the most dominant Fourier mode changes according to the plasma–vacuum
boundary form �ιv = 1.48 to �ιv = 1.58.

Equilibrium /Stability Most dominant Fourier mode (m, n) for each n

Fixed boundary /ξ s(a) = 0 (2, 1) (4, 2) (5, 3) (7, 4)
/ξ s(a) �= 0 (2, 1) (3, 2) (5, 3) (6, 4) → (7, 4)

Free boundary /ξ s(a) = 0 (1, 1) (3, 2) (4, 3) (6, 4)
/ξ s(a) �= 0 (1, 1) (3, 2) (4, 3) (6, 4)
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Figure 12. Radial profiles of Fourier components of the normal displacement ξ s of the eigenfunction for n = 1 (the first and second
columns) and for n = 4 (the third and fourth columns) in the fixed boundary MHD equilibrium with �ιv = 1.72 for β = 3%. Eigenfunctions
in the first and third (the second and fourth) columns indicate perturbations under the fixed (free) boundary with ξ s(a) = 0 (ξ s(a) �= 0). The
corresponding growth rates are drawn in the first and the second columns of figure 11. The attached numbers denote the poloidal mode
numbers m.

table 5 for fixed (ξ s(a) = 0) and free (ξ s(a) �= 0) boundary
stability analyses in fixed and free boundary MHD equilibria.
Fixed boundary perturbations with ξ s(a) = 0 in the fixed
boundary MHD equilibria (the first column in figure 11) have
clear properties of the pressure-driven modes, namely, the
growth rates γ become larger as the toroidal mode number
n increases. Moreover, the mode structure changes from the
interchange modes denoted by circles (n = 1 and 2) to the
ballooning modes indicated by triangles (n = 3 and 4). The
radial profiles of the Fourier modes of the normal displacement
ξ s for n = 1 and 4 modes are shown in the first and the third
columns of figure 12.

It might be useful to explain the ballooning modes in
the three-dimensional magnetic configurations. Although the
three-dimensional magnetic configurations like LHD have a
stellarator-like magnetic shear with the opposite sign to that
in standard tokamaks, it has been analytically shown that
there is a possibility that the local magnetic shear in the
stellarator-like (global) magnetic shear region disappears when
the Shafranov shift becomes large [19]. In these stellarator-like
global magnetic shear region, there are two types of ballooning
modes depending on the Mercier stability [20, 21]. One is
the tokamak-like ballooning mode with weak toroidal mode
coupling, and the other is the ballooning mode with strong
toroidal mode coupling inherent to the three-dimensional
configurations. The former consists mainly of the Fourier
modes with the same toroidal mode number n as well as the
tokamak cases, and the latter consists of the Fourier modes with
different toroidal mode numbers. In a Mercier unstable region,
both types of ballooning modes become unstable and the
ballooning modes with strong toroidal mode coupling inherent
to the three-dimensional configurations have larger growth
rates than tokamak-like ballooning modes. On the other hand,
in the Mercier stable region, only ballooning modes with
strong toroidal mode coupling become unstable. Ballooning

modes with strong toroidal mode coupling inherent to the three-
dimensional configurations typically have larger poloidal and
toroidal mode numbers than tokamak-like ballooning modes
(m ∼ n � M). In the present situations, both the most
dominant Fourier modes indicated in table 5 and almost all
other excited Fourier components have resonant surfaces in
the Mercier unstable region, namely, all unstable modes are
excited in the Mercier unstable region with a stellarator-like
global magnetic shear (see figure 10).

In the fixed boundary MHD equilibria, local mode
analyses using the high-n ballooning equation show that high-n
ballooning modes are unstable in the Mercier unstable region.
Thus, the ballooning modes for n = 3 and 4 under the fixed
boundary condition with ξ s(a) = 0 in the fixed boundary
MHD equilibria shown in the first column of figure 11 are
pure tokamak-like ballooning modes. The radial profile of
Fourier components of the normal displacement ξ s of the
eigenfunction for n = 4 is shown in the third column of
figure 12. Perturbations under the free boundary condition
with ξ s(a) �= 0 (the second column in figure 11) have
completely different toroidal mode number n dependence from
those under the fixed boundary conditions with ξ s = 0, namely
the growth rates decrease (increase) with respect to the toroidal
mode number n for free (fixed) boundary perturbations. The
reason comes from the radial structure of the eigenfunctions.
n = 1 and 2 perturbations under the fixed boundary condition
are radially global interchange modes with much wider radial
widths than tokamak-like ballooning modes with n = 3 and
4, as shown in the first and third columns of figure 12. Thus,
the global interchange modes with n = 1 and 2 are more
destabilized by the free boundary condition with ξ s(a) �= 0
than tokamak-like ballooning modes with n = 3 and 4 [3].
As is understood by comparing the first and the second (the
third and the fourth) columns in figure 12, when the free
boundary motion is allowed, each Fourier mode has a tendency
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Figure 13. Radial profiles of Fourier components of the normal displacement ξ s of the eigenfunction in the free boundary MHD equilibrium
with �ιv = 1.72 for β = 3% (the first and second columns), which correspond to the growth rates with n = 2 in the third and fourth columns
of figure 11, and for β = 4% (the third and fourth columns). Eigenfunctions in the first and third (the second and fourth) columns indicate
perturbations under the fixed (free) boundary with ξ s(a) = 0 (ξ s(a) �= 0). The attached numbers denote the poloidal mode numbers m.

to have the same sign or phase outside the torus and the
Fourier modes with the rational surfaces near the plasma
periphery are additionally excited. These changes by the free
boundary motion make the eigenmodes more radially global.
The difference of the growth rates between fixed boundary
condition with ξ s(a) = 0 and free boundary condition with
ξ s(a) �= 0 reduces as n increases, because higher n modes
have more localized radial structures than lower n modes.

It is quite clear from figure 11 that free boundary
MHD equilibria are significantly stable compared with the
corresponding MHD equilibria with the fixed boundary,
partially because the Mercier stability DI in free boundary
equilibria is significantly improved compared with that in the
fixed boundary equilibria and partially because the dangerous
low-n rational surfaces, especially �ι = 1/2, disappear in
free boundary equilibria (see figure 10). Basic properties
of the significant differences are understood by comparing
fixed boundary perturbations between fixed and free boundary
equilibria (the first and third columns in figure 11). Since
the rational surface with �ι = 1/2 existing in fixed boundary
MHD equilibria disappears for the free boundary MHD
equilibria, most dominant Fourier mode with n = 1 or 2
changes from (m, n) = (2, 1) or (4, 2) for fixed boundary
equilibria to (m, n) = (1, 1) or (3, 2) for free boundary
equilibria. As a result, the fairly unstable global low-n
interchange modes change into weakly unstable localized
interchange modes. More significant stabilization comes
from the improvement of the Mercier criterion. Through
this improvement, the ballooning unstable equilibria under the
fixed boundary condition (the first column in figure 11) become
nearly ballooning marginal stable equilibria under the free
boundary condition (the third column in figure 11). Indeed,
the fixed boundary perturbations for n = 3 and 4 change
from the ballooning modes in the fixed boundary equilibria
into interchange modes in the free boundary equilibria. This
fact that free boundary MHD equilibria are near the marginal
stability against high-n ballooning modes will be discussed
in more detail later. Thus, ballooning-like free boundary
perturbations in the free boundary equilibria (the fourth column
in figure 11) are not pure tokamak-like ballooning modes but
ballooning-like modes induced by the free boundary motion
(ξ s(a) �= 0) of Fourier components of the interchange modes.
Figure 13 shows the change of the eigenfunctions (the radial
displacements ξ s) by the stability boundary conditions for free
boundary equilibrium with �ιv = 1.72 and β = 3% or β = 4%.
Under the fixed boundary condition with ξ s(a) = 0, the

eigenfunction has an interchange structure (the first and third
columns in figure 13). Even and odd Fourier modes have such
opposite signs that each Fourier mode is out of (in) phase in
the outboard (inboard) of torus. Thus, the radial displacement
ξ s has no (some) radial nodes in the inboard (outboard) of the
torus, which indicates the characteristics of interchange modes
[21]. In contrast, under the free boundary condition with
ξ s(a) �= 0, the eigenfunction has a ballooning structure (the
second and fourth columns in figure 13). Even and odd Fourier
modes have such same signs that each Fourier mode is in (out
of) phase in the outboard (inboard) of torus. Thus, the radial
displacement ξ s has no (some) radial nodes in the outboard
(inboard) of the torus, which indicates the characteristics of
ballooning modes [21]. This property becomes more clear as β

increases, as is understood from figure 13. Since each Fourier
mode near the plasma periphery radially extends more and
overlaps when the non-vanishing normal displacement ξ s(a)

is allowed at the plasma boundary, so that when the equilibrium
is near the marginally stable state of the ballooning mode,
isolated Fourier modes making interchange mode structure
under the fixed boundary condition with ξ s = 0 can become
a ballooning-like structure under the free boundary condition
with ξ s �= 0. Other interesting property is the excitation of the
Fourier mode resonating at the mode rational surface outside
the plasma (n/m − 2/1), which will be mentioned in detail
later.

In order to see how much the equilibrium is stable or
unstable against high-n ballooning modes, high-n ballooning
stability or �ι′ − P ′ stability diagram corresponding to s − α

stability diagram in tokamak plasma are evaluated using the
method of profile variations, where �ι′ = d�ι/dψ and P ′ =
dP/dψ , respectively [22]. It has been found out that all the free
boundary MHD equilibria with β = 3% or β = 4% are in the
second stable region or strongly stable in the plasma core region
and near the marginally stable states in the plasma periphery
against the high-n ballooning modes. Figure 14 shows the
example of the �ι′ − P ′ stability diagrams in the plasma core
region (the first column) and in the plasma periphery (the
second column) for MHD equilibrium with vacuum boundary
of �ιv = 1.48. In these analyses, the radial wave number θk

is set 0 and the most dangerous magnetic field line is selected
in each flux surface. In figure 14, solid (dotted) lines indicate
the marginally stability boundaries for MHD equilibrium with
β = 3% (β = 4%). Two rectangles in each graph indicate
the location of the original surfaces for two β values, and the
location moves along the direction of arrow as β increases.
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Figure 14. Stability diagram of high-n ballooning modes in �ι′ − P ′ plane at two flux surfaces in the plasma core (ρ ∼ 0.29, the first column)
and in the plasma periphery (ρ ∼ 0.82, the second column) for MHD equilibrium with vacuum boundary of �ιv = 1.48. Note that since �ι is
negative in these analyses, the vertical axis has an opposite sign to standard usage and �ι′ is positive (negative) in plasma core (periphery).
Solid (dotted) lines indicate the marginally stable lines for β = 3% (β = 4%). Rectangles denote the location of the original flux surfaces,
and arrows show the direction of the change of the location with increasing β.

It is quite clear that the plasma core region is strongly stable
against high-n ballooning modes, and that these properties
do not change as β increases, namely, the core region has a
tendency to move to the second stability region as β increases.
In contrast, it is also clear that in the plasma periphery, the
MHD equilibrium exists around the marginally stable state
against the high-n ballooning modes. This tendency does
not change in the range of β value used in stability analyses.
Moreover, it might be expected that the MHD equilibria with
higher β values still exist near the marginally stable states
against high-n ballooning modes near the plasma periphery.

One of the characteristics of the stability analyses for
free boundary MHD equilibria is that interchange mode with
an externally resonant Fourier component, namely, (m, n) =
(1, 2) is excited as shown in the second and fourth columns in
figure 13, where a larger plasma boundary with �ιv = 1.72 is
chosen. This component of Fourier mode is usually observed
in the high-β plasma in the inward-shifted configuration
with γc = 1.220, as is shown in figure 2 and table 2
[10]. In these perturbations given in the second and the
fourth columns of figure 13, (m, n) = (1, 2) mode may be
dominantly observed experimentally, because the magnitude
of the magnetic perturbation of each Fourier mode in the
vacuum region is determined by the magnitude of the normal
displacement at the plasma boundary ξ s(a), and the magnetic
probes detect the vacuum magnetic perturbations. Moreover,
experimentally observed Fourier mode: (m, n) = (2, 3) [11]
is excited as the second most unstable mode as shown in
figure 15. Experimentally observed Fourier modes, however,
appear only as externally resonating Fourier components in
these stability analyses. For example, the mode rational flux
surface with �ι = 3/2 exists inside the plasma for the MHD
equilibria with the vacuum boundary �ιv = 1.72. However, the
Fourier components with (m, n) = (2, 3) does not have such a
large amplitude at the plasma boundary that the most dominant
Fourier mode of the vacuum magnetic perturbation becomes
(m, n) = (2, 3), the reason of which might be considered to
be due to the pressure and density profiles near the plasma
periphery. The pressure profile near the plasma periphery
might strongly affect the excitation of the Fourier modes with
the mode rational surfaces there through the Mercier criterion
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Figure 15. Radial profiles of Fourier components of the normal
displacement ξ s of the eigenfunction with an externally resonant
Fourier component: (m, n) = (2, 3) for the free boundary MHD
equilibrium with �ιv = 1.48 and β = 3%. The first column
corresponds to the second most unstable mode for n = 3 for
uniform density, i.e. ρm = const. This mode becomes the most
unstable mode for n = 3, shown in the second column, for
non-uniform density with ρm = ρ0(1 − s10/2). The attached
numbers denote the poloidal mode numbers m.

DI . When the gradient of the pressure profile is fairly weak
or dP/ds ∼ 0 near the plasma boundary, the region near the
plasma boundary becomes Mercier stable (DI < 0). Thus,
ideal interchange modes with the resonant rational surfaces
near the plasma boundary with DI < 0 become stable. On
the other hand, the effects of the density profile are understood
from the comparison between the first and second columns
in figure 15, where uniform density (the first column) and
non-uniform density (the second column) are used. Since the
mass density in the place where the perturbations are localized
mainly contributes to determine the magnitude of the growth
rates and the structure of eigenfunctions, the density profile
near the plasma boundary significantly influences the growth
rate of the perturbations with Fourier modes resonating at the
external rational surfaces.

The β-dependences of the growth rates of the fixed
boundary perturbations with ξ s(a) = 0 are shown in figure 16
for 4 mode families, in three free boundary MHD equilibria
with different boundary. As is understood from the discussions
in figures 11 and 14, MHD equilibria under the free boundary
condition are ballooning stable in the core region and near
ballooning marginally stable in the peripheral region, so that all
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Figure 16. β-dependences of the normalized growth rates γ τA0 for 4 mode families under the fixed boundary stability condition with
ξ s(a) = 0. Blue, green and red symbols correspond to free boundary MHD equilibria with �ιv = 1.48, �ιv = 1.58 and �ιv = 1.72, respectively.
Only interchange modes are unstable.

Table 6. β-dependence of the most dominant Fourier modes in free
boundary equilibria with different vacuum boundary. The arrow
indicates that the most dominant Fourier mode changes according to
the plasma–vacuum boundary from �ιv = 1.48 to �ιv = 1.58. Most
dominant Fourier mode for each toroidal mode number n does not
change between fixed boundary with ξ s(a) = 0 and free boundary
with ξ s(a) �= 0 stability conditions.

Equilibrium Most dominant Fourier mode (m, n) for each n

β = 1% (2, 1) (5, 2) (8, 3) (11, 4)
β = 2% (2, 1) (4, 2) (5, 3) → (6, 3) (7, 4)
β = 3% (1, 1) (3, 2) (4, 3) (6, 4)
β = 4% (1, 1) (3, 2) (4, 3) (6, 4) → (5, 4)

the perturbations under the fixed boundary stability condition
are interchange modes.

As is understood from table 6, where the most dominant
Fourier mode for each n is indicated for various β, in low-β free
boundary equilibria, fairly radially global interchange modes
with the resonant surfaces in the plasma core region become
unstable. As β increases, the Mercier criterion much improves
from the core to the peripheral plasma region and the dangerous
low-n rational surfaces disappear, so that the unstable region
moves from the plasma core into plasma periphery (see
figure 10) and the growth rates are significantly reduced
independent of the choice of plasma–vacuum boundary. Note
that even in high-β (β = 4%), free boundary MHD equilibria
are nearly ballooning marginally stable and the growth rates
do not increase so much as β increases as shown in figure 16.

The β-dependences of the growth rates of the free
boundary perturbations ξ s(a) �= 0 are shown in figure 17
for 4 mode families, in three free boundary MHD equilibria
with different boundaries. For β < 3%, the behaviour of the
growth rates of free boundary perturbations with respect to β

value are similar to those of the fixed boundary perturbations.
All the most unstable modes are interchange modes, and so
this β range is named as the interchange regime. In the
interchange regime, the normalized growth rates γ τA0 decrease
as β increases independent of the plasma vacuum boundary

reflecting the change of the rotational transform �ι and the
improvement of the Mercier criterion DI in figure 10.

Around or above β � 3%, eigenmodes change into free
boundary induced ballooning modes except for nf = 1 mode
family, and so this range of β is named as the ballooning
regime. In the ballooning regime, the normalized growth rates
γ τA0 increase asβ increases independent of the plasma vacuum
boundary. In the interchange regime, the growth rates do not
depend on the plasma boundary, however, in the ballooning
regime, larger plasmas have more stable modes with smaller
growth rates. As mentioned, high-n ballooning analyses show
that the MHD equilibrium under the free boundary condition
is strongly stable in the core region and near the marginally
stable state in the plasma periphery, moreover, ballooning-like
modes indicated by the square symbols in figure 11 appear as
interchange modes under the fixed boundary stability analyses
as shown in figure 16. Thus, the ballooning properties of the
unstable modes under the free boundary stability analyses for
free boundary MHD equilibria with β � 3% is considered to
come from the radial extension and overlapping of the envelope
of each Fourier mode allowed by the free boundary condition:
ξ s(a) �= 0.

The stabilizing effects of the ion diamagnetic rotation
are considered as follows, where ions are assumed to be
protons. For the incompressible perturbations, the linearized
equation of motion including the ion diamagnetic frequency is
expressed as

ρm[−ω2
ξ⊥ − iω
vDi · ∇
ξ⊥] = 
F(
ξ⊥), 
vDi =

B × ∇Pi

einiB2
,

(4)

where 
vDi is the ion diamagnetic drift velocity with ion density
ni and pressure Pi, and 
F(
ξ⊥) is the standard self-adjoint ideal
MHD force operator. The correction by the ion diamagnetic
frequency in currentless MHD equilibria is read as


vDi · ∇
ξ⊥ = 1

eni

dPi

dψ

∑
mn

im
ξ⊥mn =
∑
mn

iω∗i m

ξ⊥mn, ω∗im

≡ 1

eni

dPi

dψ
m (5)
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Figure 17. β-dependences of the growth rates for 4 mode families under the free boundary stability condition with ξ s(a) �= 0. Blue, green
and red symbols correspond to free boundary MHD equilibria with �ιv = 1.48, �ιv = 1.58 and �ιv = 1.72, respectively. Circles (squares)
indicate interchange (free boundary induced ballooning) modes.

where 
ξ⊥ is Fourier decomposed, and ω∗im is the ion
diamagnetic frequency for the Fourier mode with the poloidal
mode number m. Substituting equation (5) into equation (4),
we obtain

ρm

[
−ω2
ξ⊥ +

∑
mn

ωω∗im
ξ⊥mn

]
= 
F(
ξ⊥). (6)

In the present analyses, the pressure profile is P(s) =
P(0)(1 − s)(1 − s9) and uniform density (ne = const)
is assumed. When Pi = P/2 or Te = Ti is assumed,
the ion diamagnetic frequency ω∗im given by equation (5) is
almost constant except for near the plasma boundary. Thus,
for interchange modes with a single dominant Fourier mode
(m, n), in equation (6)

∑
mn ωω∗im
ξ⊥mn ∼ ωω∗im
ξ⊥, so that

the integration of equation (6) multiplied 
ξ ∗
⊥ leads to

ω(ω − ω∗i) = λ, ω∗i = ω∗im, (7)

where λ is the eigenvalue obtained by the cas3d3 for
incompressible perturbations. Although equation (7) is only
applicable to the special cases with both (1) almost uniform ion
diamagnetic frequency ω∗im, which is satisfied in the present
analyses and (2) interchange modes with a single dominant
Fourier mode, which is satisfied for interchange modes in
low-β (�2%) equilibria, the stabilizing effects by the ion
diamagnetic rotation are recognized. Note that if equation (7)
is almost exact for some perturbations, then the perturbations
are unstable for the condition

√−λ > |ω∗i|/2 is satisfied and
the growth rates are modified by the ion diamagnetic frequency

as γ =
√

−λ − ω2
∗i/4. Thus, as a rough estimation, the

ion diamagnetic frequency ω∗i for the most dominant Fourier
modes is evaluated against the growth rates. The growth rates
γ are in the range of ω∗i for typical experimental parameters
with B ∼ 0.5 T and ne ∼ 3×1019 m−3, except for all equilibria
with β ∼ 1% and for smaller size equilibria (�ιv = 1.48)

with β = 4%, so that instabilities in the free boundary MHD
equilibria with larger plasma size might be considered to be
harmless for β > 1%. Also, it might be useful to note that
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Figure 18. The normalized growth rates γ τA0 for compressible
perturbations versus the toroidal mode number n in MHD equilibria
with the original (the first column) and modulated (the second
column) fixed boundaries. Circles (triangles) indicate the
interchange (ballooning or ballooning-like) modes. Rectangles in
the MHD equilibrium with modulated fixed boundary mean the
perturbation with externally resonant Fourier component
experimentally observed like the one in figure 15. Blue, green and
red symbols correspond to β = 1%, β = 2% and β = 3%,
respectively.

the growth rates of compressible perturbations are one-half or
one-third of those of incompressible perturbations [3].

Finally, in order to confirm that reduction of the poloidally
symmetric components leads to the significant stabilizing
effects, the stability analyses are performed for MHD equilibria
under such a fixed boundary that the only poloidally symmetric
components are eliminated from the original boundary with
�ιv = 1.48. It is understood from this modulation of the plasma
boundary that (1) the similar improvement of the Mercier
criterion is obtained, leading to the significant reduction of
the growth rates as shown in figure 18 where the normalized
growth rates γ τA0 for compressible perturbations versus the
toroidal mode number n are drawn for the MHD equilibria with
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Figure 19. β-dependences of the normalized growth rates γ τA0 for 5 mode families under the free boundary stability condition with
ξ s(a) �= 0, where incompressible perturbations are used. Blue, green and red symbols correspond to free boundary MHD equilibria with
�ιv = 1.77, �ιv = 1.83 and �ιv = 2.19, respectively. Circles (squares) indicate interchange (free boundary induced ballooning) modes.

Table 7. β-dependence of the most dominant Fourier modes in free boundary equilibria with different vacuum boundary for inward-shifted
configuration with γ = 1.220. The arrow indicates that the most dominant Fourier mode changes according to the plasma–vacuum
boundary from �ιv = 1.83 to �ιv = 2.19.

Equilibrium Most dominant Fourier mode (m, n) for each n

β = 1% (2, 1) (4, 2) (6, 3) (9, 4) (11, 5)
β = 2% (2, 1) (4, 2) (5, 3) → (6, 3) (7, 4) (9, 5)
β = 3% (1, 1) (3, 2) (4, 3) (6, 4) (7, 5)
β = 4% (1, 1) (3, 2) (4, 3) (5, 4) (6, 5) → (7, 5)

original (the first column) and modulated (the second column)
fixed boundary and (2) the similar perturbations, which have
the externally resonant Fourier component observed in the
experiments, to that in figure 11 are excited.

5.3. Effects of boundary modulation on the global mode
analyses in the configuration with γ = 1.220

Stabilizing effects of boundary modulation are investigated in
the inward-shifted configuration with γc = 1.220. Figure 19
shows the β-dependence of the normalized growth rates γ τA0

for 5 mode families under the free boundary stability condition
with ξ s(a) �= 0, where incompressible perturbations are used
as well as in the configuration with γc = 1.254. As well
as in the configuration with γc = 1.254, stabilizing effects
brought by the boundary modulation, namely the whole plasma
outward shift are clear up to β = 3%, although the growth rates
are larger than those in the configuration with γc = 1.254.
This difference of the growth rates comes from the fact that
the improvement of Mercier criterion in the configuration with
γc = 1.220 is weak compared with that in the configuration
with γc = 1.254 as is seen in figure 10.

Most unstable Fourier modes are summarized in table 7.
As well as the configuration with γc = 1.254, dangerous global
interchange modes with n/m = 1/2 disappear as β increases.

Although the stabilizing effects due to boundary
modulation are clear, the growth rates of the incompressible
perturbations are so high that the diamagnetic stabilizing
effects might not be enough for those incompressible

perturbations to become harmless. In order to see realistic
growth rates, the ideal MHD stability analyses are performed
for compressible perturbations. The comparison of the growth
rates between incompressible and compressible perturbations
are shown in figure 20 for the free boundary MHD equilibria
with �ιv = 1.83. The magnitude of the growth rates is less
than 0.05/τA0, so that it is expected that some kinetic effects
like diamagnetic rotation make those modes harmless, which
might be consistent with the experimental observation without
confinement degradation and stability β limit, as well as in the
inward-shifted LHD configuration with γc = 1.254.

Finally, effects of the steep pressure gradient at the plasma
boundary are investigated by changing the pressure profile
from P(s) = P(0)(1 − s)(1 − s9) to P(s) = P(0)(1 − s)

in the MHD equilibria with �ιv = 2.19 as shown in figure 21.
Although the growth is underestimated, since the surface terms
of the potential is not included in cas3d3, the modes with
externally resonating Fourier component n/m = 5/2 are
destabilized as the most unstable modes. This result indicates
that the steep pressure gradient near the plasma boundary has a
possibility of exciting the experimentally observed modes near
the plasma boundary. As well as the cases in the inward-shifted
LHD configurations withγc = 1.254, experimentally observed
Fourier modes with the resonant rational surfaces beyond
the vacuum LCFS are destabilized only as the externally
resonant Fourier component, because the region near the
plasma boundary is Mercier stable (DI < 0) due to the weak
pressure gradient (dP/ds ∼ 0).

197



N. Nakajima et al

Figure 20. β-dependences of the normalized growth rates γ τA0 for 5 mode families under the free boundary stability condition with
ξ s(a) �= 0 for incompressible (green) and compressible (blue) perturbations in the free boundary MHD equilibria with �ιv = 1.83. Circles
(squares) indicate interchange (free boundary induced ballooning) modes.

Figure 21. Radial profiles of Fourier components of the normal
displacement ξ s of the eigenfunction with an externally resonant
Fourier component: (m, n) = (2, 5) in the free boundary MHD
equilibrium with �ιv = 2.19 for β = 3% (left column) and for
β = 4% (right column). In these calculations, pressure profile is
changed from P(s) = P(0)(1 − s)(1 − s9) to P(s) = P(0)(1 − s),
so that these modes with an external resonant component become
the most unstable modes in nf = 5 mode family. The attached
numbers denote the poloidal mode numbers m.

6. Summary and discussions

It is well known that a boundary shaping has significant
effects on MHD stability and single particle confinements
[12]. Thus, such a boundary shaping is mainly done by
controlling an external coil current path for designing the
devices, however, there is a case in experiments that a
large internal plasma current, namely a large Pfirsch–Schlüter
current induces additional modulation of the plasma–vacuum
boundary as synergetic effects together with the transport in
the region with stochastic magnetic field, even if the external
coil current condition is fixed. In order to examine effects of
the boundary modulations on MHD equilibrium and stability,
high-β plasmas allowing a large Shafranov shift are considered
in the inward-shifted LHD configurations, for which the
previous theoretical MHD stability analyses based on the fixed
boundary MHD equilibria indicated strong MHD instabilities
compared with experimental results [3].

In the case of LHD high-β experiments, it is quite
natural to consider the boundary modulation realized by the

free boundary MHD equilibrium, because there are standard
experimental observations that (1) the electron temperature
gradient extends beyond the vacuum LCFS [7], (2) the electron
density profile is significantly hollow and extends beyond
the vacuum LCFS [8], and (3) from the low-β or with
increasing β, magnetic perturbations with the resonant rational
surfaces near or beyond the vacuum LCFS are observed by the
magnetic probes [9–11]. Therefore, to consider the boundary
modulation appearing as the plasma outward-shift beyond the
vacuum LCFS, together with the experimentally observed net
toroidal current condition (currentless condition) and pressure
profile (a broad pressure profile with steep gradient near the
plasma boundary) leads to the removal of the discrepancy
on the MHD equilibria between experimentally obtained and
theoretically used. Since such a boundary modulation or
plasma outward-shift beyond the vacuum LCFS is brought
about by the simultaneous synergetic effects between the
MHD equilibrium Pfirsch–Schlüter current due to the pressure
gradient, leading to changes in the magnetic field, and the
transport in the region with stochastic magnetic field lines,
leading to changes in the temperature and the density, the
concept of the averaged flux surfaces is introduced in the region
with stochastic magnetic field lines, which are defined as the
confinement region with a long connection length compared
with the parallel mean free path, a definite rotational transform
and a small electron thermal conductivity, in order to realize
the confinement region in the stochastic region.

It has been shown for the inward-shifted LHD
configurations that the boundary modulation has significant
stabilizing properties for ideal pressure-driven modes through
the improvement of the Mercier criterion and elimination
of the dangerous low-n rational surfaces, leading to the
partial removal of the discrepancy on MHD stability between
experimental results and theoretical consideration. The
most significant differences between fixed boundary equilibria
without boundary modulation and free boundary equilibria
with boundary modulation are that (1) a monotonic increase in
the growth rate with β value in the fixed boundary equilibria
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disappears in the free boundary equilibria and that (2) high-
n ballooning unstable equilibria under the fixed boundary
condition change into high-n ballooning marginally stable
equilibria under the free boundary condition. One other
interesting point is the excitation of the free boundary-induced
ballooning modes.

The correspondence between experimentally observed
magnetic signals and theoretically obtained unstable modes is
not so clear for the modes resonating near the plasma edge even
if the experimentally measurable range of the Fourier modes is
taken into account. This difference will be analysed in detail
taking account of the vacuum magnetic perturbations due to the
unstable modes and pressure profiles with more steep gradient
near the plasma boundary, and the resistive interchange
modes.

In order to create more consistent MHD equilibria between
experiment and theory, the transport process in the stochastic
magnetic field region is introduced into the MHD equilibrium
calculations by modifying HINT or HINT2 algorithm, by
which the concept of the averaged flux surfaces will be replaced
by a more realistic concept.
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